

Response of soil microbial communities during changes in land-management

Kamlesh Jangid^a, Mark A. Williams^b, Alan J. Franzluebbers^c, Thomas M. Schmidt^d, David C. Coleman^a, and William B. Whitman^a

^a University of Georgia, Athens, GA; ^b Mississippi State University, Starkville, MS; ^c USDA-ARS, Watkinsville, GA; ^d Michigan State University, East Lansing, MI

Background

An accelerated degradation of ecological environments has occurred over the last century. Natural revegetation has been regarded as the most effective restoration strategy. However, response of belowground microbial communities to these successional processes is poorly understood.

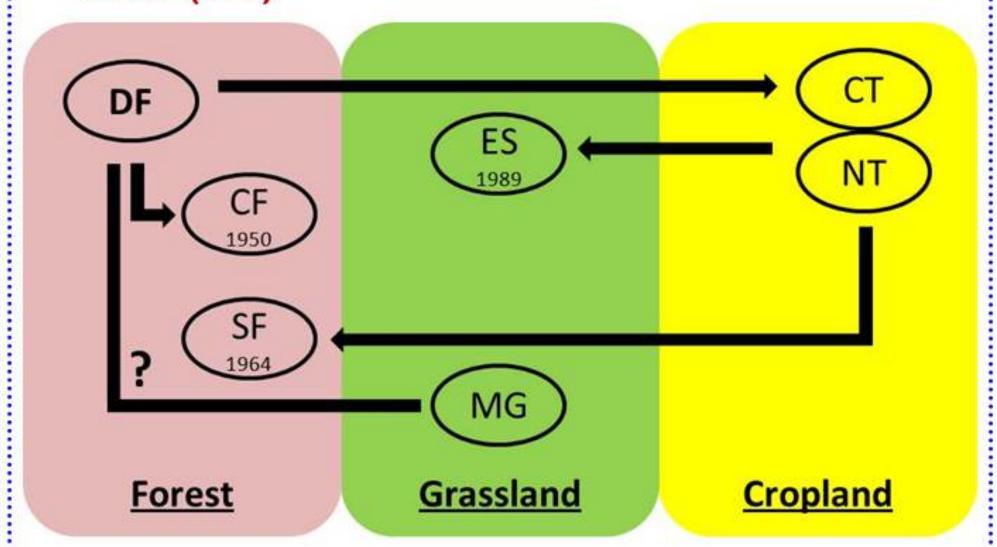
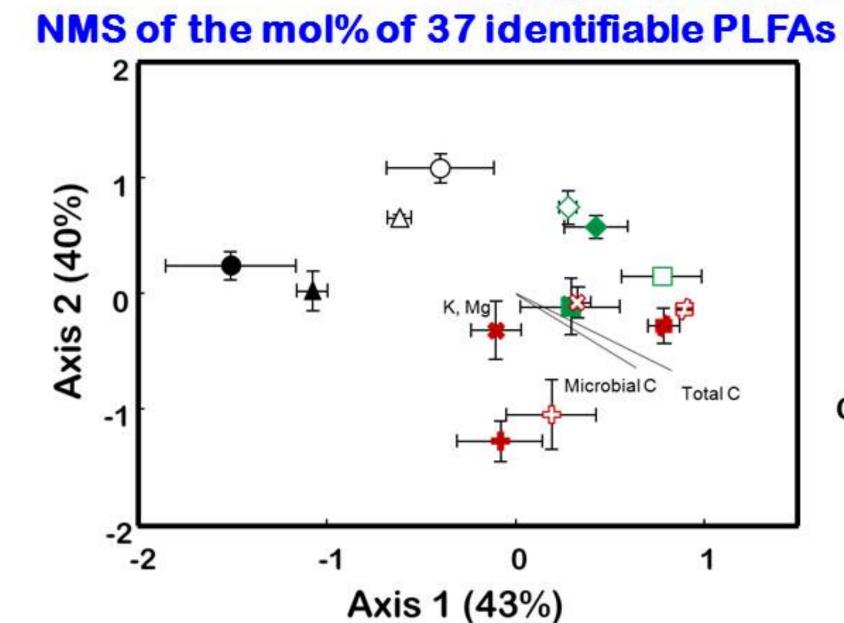
Hypothesis

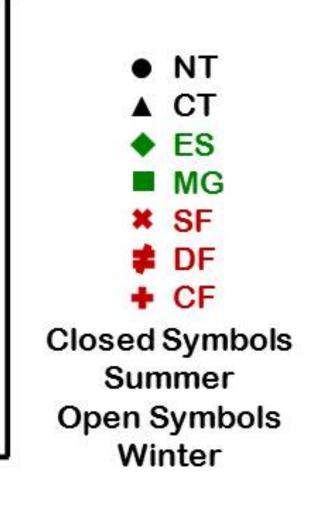
Microbial communities in restored soil would return to their native state with time. The structure & composition of stabilized state is dependent upon the nature of disturbance & the restoration regime used.

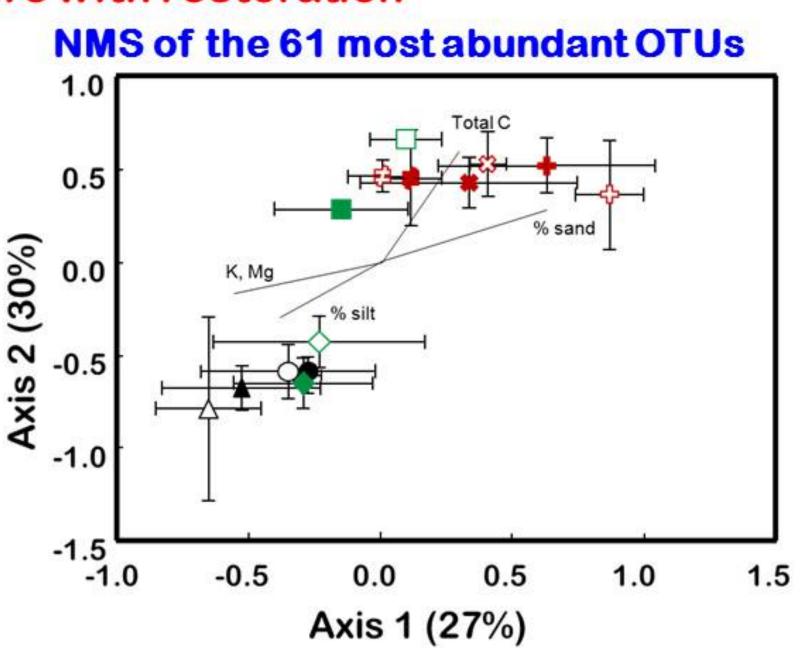
Study Site

W.K. Kellogg Biological Station, Michigan

- ♣ Never tilled cropland (NT)
- Moldboard plowed cropland (CT)
- Early-succession grassland restored in 1989 (ES)
- Mowed grassland (MG)
- Mid-successional forest restored in 1964 (SF)
- ♣ Native deciduous forest (DF)
- Coniferous forest planted with conifers in 1950 (CF)


Fig. 1. Origins of various plots and their land management regimes studied at KBS, Michigan.


Experimental Strategy Sampling 5 cores/plot 3 plots/treatment Sample Cleanup 16S rRNA gene Physicochemical **PLFA** Analysis library Analysis Sequencing & Proofreading **Data Analysis** (LIBSHUFF, DOTUR, GreenGenes, RDPquery) **Community Composition** & Diversity

Results

Changes of community structure with restoration

Changes in bacterial diversity were small

Diversity Index	NT	СТ	ES	MG	SF	DF	CF
Number of clones, N	530	525	554	543	533	525	538
Number of OTUs, S	349	343	347	333	319	337	272
Shannon Index, $H=\Sigma[(n/N)In(n/N)]$	5.55	5.53	5.55	5.46	5.46	5.55	5.20
Reciprocal of Simpson's index, 1/D	211	197	236	193	221	256	146
Evenness= H/log(S)	2.18	2.18	2.18	2.17	2.18	2.20	2.14
H/H _{max} , at H _{max} , n= N; see above	0.89	0.88	0.88	0.87	0.87	0.89	0.83
Chao1= S + $n_1^2/2n_2$	1351	1248	1225	1152	1248	1099	803
95% lower confidence interval	1007	940	925	871	905	842	604
95% higher confidence interval	1787	1638	1606	1511	1690	1427	1066

Significant differences in bacterial community composition by LIBSHUFF^a

Phylogenetic	CT-SF	CT-SF-DF Gradient			CT-ES-MG Gradient			Vegetation	Succession	Native
Group	CT vs SF	SF vs DF	CT vs DF	CT vs ES	ES vs MG	CT vs MG	CT vs NT	CF vs DF	ES vs SFc	MG vs DF
Acidobacteria	0.002	0.002	0.002	0.002	0.004	0.002	0.558	0.002	0.002	0.002
Bacteroidetes	0.008	0.032	0.002	0.382	0.227	0.006	0.165	0.006	0.143	0.010
Planctomycetes	0.550	0.407	0.832	0.621	0.004	0.765	0.937	0.664	0.148	0.510
Proteobacteria	0.002	0.016	0.002	0.002	0.002	0.002	0.358	0.012	0.032	0.002
α-Proteobacteria	0.018	0.314	0.002	0.873	0.583	0.194	0.399	0.143	0.063	0.120
β-Proteobacteria	0.055	0.150	0.002	0.002	0.002	0.002	0.407	0.047	0.206	0.002
∆-Proteobacteria	0.433	0.567	0.168	0.047	0.636	0.040	0.724	0.888	0.449	0.443
γ-Proteobacteria	0.040	0.168	0.038	0.002	0.183	0.002	0.358	0.203	0.609	0.002

- Experimentwise *p*-value calculated after Bonferroni correction are reported. *P*-values ≤ 0.01 are in RED; ≤ 0.05 are in GREEN.
- Phylogenetic groups for which total number of sequences compared were >20 are not shown and included *Firmicutes* and *Gemmatimonadetes*. The composition of *Actinobacteria* did not differ significantly for any comparison.
- c The composition of Verrucomicrobia differed significantly.

Distribution of most abundant operational taxonomic units (OTUs)^a

Rep. OTU	No. of Clones in Library							Total	
Clone ID	NT	СТ	ES	MG	SF	DF	CF	Total	
MA1S1_G01b	20	20	14	9	4	5	5	77	
MA1S1_B02	9	4	9	18	11	10	12	73	
MA1S3_E12	2	1	1	14	22	10	15	65	
MA1S1_A06b	17	19	17	3	0	0	1	57	
MA1S2_H11	10	4	10	8	6	5	1	44	
MA1S3_H10	3	1	4	7	10	4	11	40	
MA1S1_A08	6	7	3	1	5	14	2	38	
MA1S3_B11	3	1	8	4	3	3	14	36	
MA1S3_B12	2	2	1	4	8	2	15	34	
MA1S1_B05	4	3	5	1	8	10	2	33	
MA1S1_H08	10	7	6	2	1	4	2	32	
MA1W3_A02	4	2	1	4	9	6	6	32	
MA3W1_G10	0	0	0	3	10	5	11	29	
MA2S1_B04	3	0	0	5	6	8	5	27	
MA1S2_A11	1	2	3	10	4	5	0	25	
MA1S1_A11b	8	6	8	0	1	0	1	24	
MA1S1_D01	2	2	3	8	4	0	5	24	
MA1S1_H09	4	5	5	3	2	2	3	24	
aOnly representative OTUs are presented. Distributions									
where $p \le 0.05$ by the binomial test are in RED.									

bIndicator species (p < 0.01) contributing to differences.

Conclusions

- **♣**Despite significantly different soil properties & vegetation, microbial communities in MG & DF are very similar, although some notable differences existed
- **4After 42 years**, microbial communities in SF are very similar to those in DF
- **LES & MG** have similar vegetation but significantly different microbial communities due to history of land-management
- **Leven after 17 years, ES is more similar to**CT than MG indicative of a slow response to restoration

Acknowledgements

This work was supported by a grant from the US Department of Agriculture (USDA-NRI-CGP).