

Soil bacterial community composition and diversity as affected by animal manure application in pasture and cropping systems of the Southern Piedmont USA

Correspondence Prof. William B Whitma whitman@uga.edu 706-542-4219 **Presenting Author** Dr. Kamlesh Jangio jangidk@uga.edu 706-542-4692

Kamlesh Jangid¹*, Mark A. Williams², Alan Franzluebbers³, Michael Jenkins³, Dinku Endale³, David C. Coleman⁴ and William B. Whitman¹

¹ Department of Microbiology, University of Georgia, Athens GA 30602; ² Department of Plant and Soil Sciences, 470 Dorman Hall, Mail Stop 9555, Mississippi State University, MI 39762;

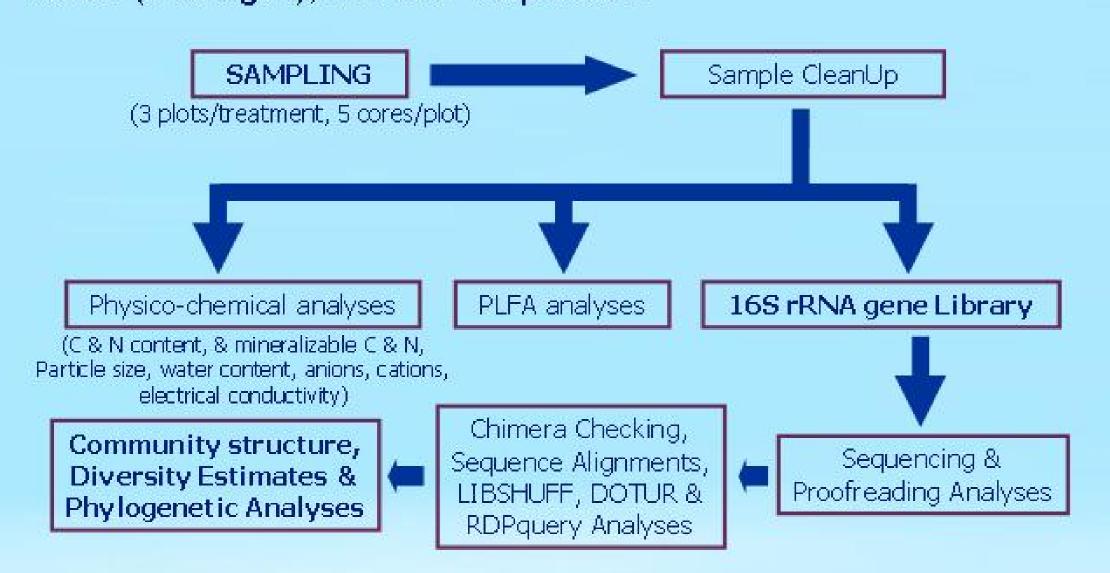
³ USDA - Agricultural Research Service, 1420 Experiment Station Road, Watkinsville GA 30677; ⁴ Institute of Ecology, University of Georgia, Athens GA 30602

Abstract

While land management practices are known to have a tremendous impact on agro-ecosystems and their microbial activities, their effects on prokaryotic diversity are not well described. Seven management systems at the J. Phil Campbell, Sr., Natural Resource Conservation Center (JPCSNRCC) near Watkinsville, Georgia were investigated: cropping with inorganic fertilizer (A1), cropping with poultry litter fertilizer (A2), bermudagrass hay with inorganic fertilizer (B1), bermudagrass hay with poultry litter fertilizer (B2), bermudagrass grazed by cattle receiving inorganic fertilizer (C1), bermudagrass grazed by cattle receiving poultry litter fertilizer (C2), and control forest without agriculture since the Civil War (D0). Mixed community DNA was extracted from soil, and the bacterial 16S rRNA genes were amplified in 15-cycle PCR, cloned, and then sequenced. The resulting 3706 sequences were

used to analyze the community composition and diversity by RDPquery, LIBSHUFF, and other methods. LIBSHUFF

analyses indicated that the bacterial communities from soils under all seven treatments were significantly different. While the forest soils (D0) contained the highest numbers of Acidobacteria, the poultry litter treated soils (A2, B2 and C2) contained the least. Similarly, y-Proteobacteria were unusually abundant in soils from cropland with inorganic fertilizer (A1). Interestingly, Nitrospira were specifically present only in the poultry litter treated soils (A2, B2 and C2). Seasonal differences were also observed for communities in the cropland (A1 and A2) and grazed pasture receiving inorganic fertilizer (C1), but not in the other treatments. Gemmatimonadetes occurred more frequently in the inorganic fertilizer treated summer from both cropland (A1) and grazed pasture (C1) than in the winter. The reasons for differences could be readily explained in only a few cases at this stage. Further analyses will be conducted to better understand the effects of land management on soil prokaryotic communities.



Introduction

Although soils represent one of the most complex and difficult environments to study, it is amongst the largest and extremely diverse reservoirs of prokaryotes in the biosphere. Estimates show that it contains on the order of 2.6 x 10²⁹ cells worldwide or ~5% of all prokaryotic cells on earth (Whitman et al., 1998). Agriculture is one of the most important human activities that depends upon soil. While agriculture is well known to affect the activity of prokaryotic community of soil, the effects on prokaryotic diversity are not well described (Kennedy, 1999). Previously published reports that studied the prokaryotic diversity of soil used different methodologies, lacked correlation and were based on insufficient number of 16S rRNA gene clones. Hence, there is a need for a more systematic study that could be used as a standard for future studies.

Experimental Strategy

Mixed community DNA was extracted from soil, and the bacterial 16S rRNA genes were amplified in 15-cycle PCR, cloned in pCR2.1® vector (Invitrogen), and then sequenced.

Site Description

The J. Phil Campbell, Sr., Natural Resource Conservation Center (JPCSNRCC), Watkinsville, Georgia

- 10 by 30 m plots with Cecil sandy loam soil conventionally cropped with corn/rye since 1991.
- Control neighboring forest in an upland field with Cecil sandy loam soil with loblolly pine plantation protected from cultivation since the 1860's.
- Plots conventionally cultivated with various rowcrops prior to grassland establishment in 1991.

Treatments Studied to test affects of manure on soil bacteria

Sample Code	Type of Field and Fertilizer	Type of Manure	Seasons Sampled*		
Α	Conventionally Cropped				
A1	Inorganic	None	S/W		
A2	Broiler litter	Poultry	S/W		
В	Unharvested Pasture Grass				
B1	Inorganic	None	S/W		
B2	Broiler litter	Poultry	S/W		
С	Cattle grazed Pasture Grass				
C1	Inorganic	Cattle	S/W		
C2	Broiler litter	Cattle + Poultry	S/W		
D	Undisturbed forest with no inputs	None	S/W		

*S= Summer, W= Winter

The 16S rRNA gene clones were sequenced at the Pratt Lab, Department of Plant Biology, University of Georgia

Results

Diversity indices for the soil 16S rRNA gene libraries^a

Part and the second		Crop	oland		Diversity	For	
Diversity	Inorgai	nic (A1)	Poultr	y (A2)	Index	(D	0)
Index	A1S	A1W	A2S	A2W	Hidex	S	W
S ^b	107	148	195	167	Sp	142	135
Nc	259	260	263	263	Nc	277	258
Evenessd	2.15	2.17	2.20	2.21	Evenessd	2.12	2.13
H/Hmax	0.79	0.85	0.91	0.88	H/Hmax	0.81	0.82
Chao 1 ^e	125	448	752	318	Chao 1e	382	386
95% lci ^f	115	305	517	256	95% lcif	269	265
95% hci ^g	145	653	1068	408	95% hcig	546	561

		Ungrazed	Pasture	Grazed Pasture						
Diversity Index	Inorga	nic (B1)	Poult	ry (B2)	Inorgar	nic (C1)	Poultry (C2)			
	B1S	B1W	B2S	B2W	C1S	C1W	C2S	C2W		
S ^b	195	178	197	188	184	151	200	204		
Nc	272	262	275	264	274	252	260	267		
Evenessd	2.23	2.22	2.24	2.23	2.20	2.18	2.23	2.24		
H/Hmax	0.91	0.90	0,91	0.91	0,89	0.86	0.93	0.93		
Chao 1e	911	455	529	743	534	429	1040	638		
95% lci ^f	585	341	397	499	389	301	662	467		
95% hcig	1351	613	708	1075	733	610	1547	867		

*Calculations were based on OTUs formed using DOTUR (Schloss & Handelsman, 2005) at an evolutionary.

Number of OTUs.

* Chao 1= $S + n_1^2/2n_2$, where n_2 is the number of clones that occur twice.

* 95% lower confidence interval for Chao1 estimator.

9 95% higher confidence interval for Chao1 estimator.

LIBSHUFF comparisons of the soil 16S rRNA gene libraries^a

	Differer	ices*
Type of Treatment	Within Replicates	Between Seasons
Conventionally Cropped		
A1	S	Υ
A2	S, W	Y
Unharvested Pasture Grass		
B1		
B2	S	
Cattle grazed Pasture Grass		
Č1	S, W	Υ
C2	W	-
Undisturbed forest (D0)		Access of the second

'Comparison's were made using LIBSHOFF (Singleton et al., 2001). The experimentwise p-value calculated from the Bonferroni correction was

0.002 for all the treatments.

* S=Summer, W=Winter, Y=Significant differences

Sequence Data Summary

ones prepared	: 4032
equences obtained	: 3719
nimeric sequences	: 12
n-16S rRNA sequences	: 1
equences used for analyses	: 3706
ean Read length	· 842 hr

SOME STATE OF THE		Crop	oland		Diversity	For	est
ersity	Inorgai	nic (A1)	Poultr	y (A2)	Index	(D	0)
ndex	A1S	A1W	A2S	A2W	inidex	S	W
	107	148	195	167	Sb	142	135
	259	260	263	263	Nc	277	258
ess ^d	2.15	2.17	2.20	2.21	Evenessd	2.12	2.13
ax	0.79	0.85	0.91	0.88	H/Hmax	0.81	0.82
1 ^e	125	448	752	318	Chao 1e	382	386
ó lci ^f	115	305	517	256	95% loi ^f	269	265
6 hci ^g	145	653	1068	408	95% hci ^g	546	561

distance of <0.03. S= Summer, W= Winter

Number of clones in the library.

Minimum and maximum eveness values were 0 & 2.3, respectively.

No.	1							
				717	1			
						12		
a la								
	10	140	(III)	THE STATE OF	1			
			No.		四點		地域	1
			第					
07						1		
大 李龍		N. A.				Lie		
PART					- 17 CE	600 L		1

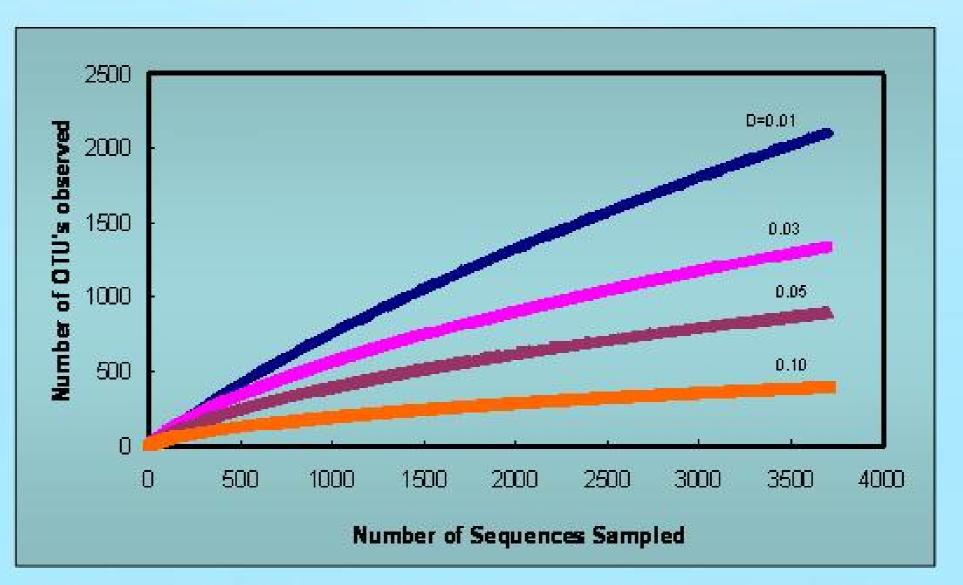
JPCSNRCC, Forest site

Phylogenetic Assignments of 16S rRNA gene Clones

	Crop	land (a	of cla	nes)a
Taxa	A		Ver	2
	S*	W*	S	W
pacteria	58	71	39	36
bacteria	4	4	5	9
roidetes	14	24	18	22
vo <i>bacteria</i>	4	7	13	10
ningobacteria	9	16	3	10
classified ^b	1	1	2	2
flexi				
bacteria		11	3	6
acteres	2		2	
utes	30	30	56	53
eilli	5	1	15	5
stridia	1		3	1
classified ^b	24	29	38	47
atimonadetes	7	1	7	9
pira			3	2
omycetes	15	10	8	12
bacteria		100		
roteobacteria	13	13	22	18
roteobacteria	23	36	27	49
roteobacteria	13	6	30	13
roteobacteria	63	45	18	15
classified ^b	7	5	12	9
haetes	2			
omicrobia				
comicrobia	2	2	4	3
a incertae sedis		1	2	
ssified Bacteria ^c	6	1	7	7
ssified				
(all taxa)	259	260	263	263

	Crop	land (#of clo	ones)ª			rest				Past	ure (#	of clo	nes)ª		
Taxa		.1	/	12	Taxa		lones) ^a	Taxa	E	31	E	2	С	1	C	C2
	S*	W*	S	W		S*	W*	**************************************	S*	W*	S	W	S	W	S	V
Acidobacteria	58	71	39	36	Acidobacteria	136	119	Acidobacteria	63	54	37	54	76	72	55	4
Actinobacteria	4	4	5	9	Actinobacteria	9	6	Actinobacteria	9	3	6	6	7	12	7	1
Bacteroidetes	14	24	18	22	Bacteroidetes	5	7	Bacteroidetes	14	13	9	22	14	8	24	1
Flavobacteria	4	7	13	10	Flavobacteria	1		Flavobacteria	10	11	6	16	3	6	12	1
Sphingobacteria -	9	16	3	10	Sphingobacteria	1	1	Sphingobacteria	3		3	4	9	2	6	2
Unclassified ^b	1	1	2	2	Unclassified ^b	3	6	Unclassified ^b	1	2		2	2		6	7
Chloroflexi					Chloroflexi			Chloroflexi			1					
Cyanobacteria		11	3	6	Cyanobacteria			Cyanobacteria		1					1	3
Fibrobacteres	2		2	440	Fibrobacteres			Fibrobacteres				2	2			9
Firmicutes	30	30	56	53	Firmicutes	39	32	Firmicutes	61	58	60	49	55	64	59	6
Bacilli	5	1	15	5	Bac illi	4		Bacilli	11	21	14	5	28	25	19	1
Clostridia	1		3	1	Clostridia			Clostridia							1	
Unclassified ^b	24	29	38	47	Unclassified ^b	35	32	Unclassified ^b	50	37	46	44	27	39	39	5
Gemmatimonadetes	7	1	7	9	Gemmatimonadetes	07070	1	Gemmatimonadetes	5	3	3	4	12	2	8	
Nitrospira			3	2	Nitrospira		4	Nitrospira	2		5	6			6	3
Planctomycetes	15	10	8	12	Planctomycetes	25	13	Planctomycetes	12	25	19	15	12	9	13	1
Proteobacteria		7,000		28:45	Proteobacteria		1922	Proteobacteria								
α-proteobacteria	13	13	22	18	α-proteobacteria	27	30	α-proteobacteria	27	29	26	28	24	24	23	2
β-proteobacteria	23	36	27	49	β-proteobacteria	12	20	β-proteobacteria	32	42	47	42	30	17	25	3
δ-proteobacteria	13	6	30	13	δ-proteobacteria	1	2	δ-proteobacteria	10	7	14	7	8	8	11	ζ
γ-proteobacteria	63	45	18	15	γ-proteobacteria	5	4	γ-proteobacteria	17	8	14	9	18	19	7	3
Unclassified ^b	7	5	12	9	Unclassified ^b	4	7	Unclassified ^b	10	9	24	13	4	9	10	1
Spirochaetes	2			18	Spirochaetes		36	Spirochaetes								
Thermomicrobia					Thermomicrobia			Thermomicrobia					1			
Verrucomicrobia	2	2	4	3	Verrucomicrobia	13	11	Verrucomicrobia	4	6	2	2	5	2	3	4
Genera incertae sedis		1	2		Genera incertae sedis		1	Genera incertae sedis	2	1	1	2	3	1	1	3
Unclassified Bacteria	6	1	7	7	Unclassified Bacteriac	1	1	Unclassified Bacteriac	4	3	7	3	3	4	6	7
Unclassified				200	Unclassified		10°	Unclassified						1	1	
Total (all taxa)	259	260	263	263	Total (all taxa)	277	258	Total (all taxa)	272	262	275	264	274	252	260	26

	Pasture (# of clones) ^a										
Taxa		1	E	32	C	1	С	2			
	S*	W*	S	W	S	W	S	W			
Acidobacteria	63	54	37	54	76	72	55	47			
Actinobacteria	9	3	6	6	7	12	7	10			
Bacteroidetes	14	13	9	22	14	8	24	16			
Flavobacteria	10	11	6	16	3	6	12	11			
Sphingobacteria	3		3	4	9	2	6	4			
Unclassifiedb	-1	2		2	2		6	1			
Chloroflexi			Ť								
Cyanobacteria		1					1	2			
Fibrobacteres				2	2			1			
Firmicutes	61	58	60	49	55	64	59	66			
Bacilli	11	21	14	5	28	25	19	16			
Clostridia							1				
Unclassified ^b	50	37	46	44	27	39	39	50			
Gemmatimonadetes	5	3	3	4	12	2	8	7			
Nitrospira	2		5	6			6	3			
Planctomycetes	12	25	19	15	12	9	13	16			
Proteobacteria											
a-proteobacteria	27	29	26	28	24	24	23	21			
β-proteobacteria	32	42	47	42	30	17	25	35			
δ-proteobacteria	10	7	14	7	8	8	11	9			
γ-proteobacteria	17	8	14	9	18	19	7	7			
Unclassifiedb	10	9	24	13	4	9	10	19			
Spirochaetes											
Thermomicrobia					1						
Verrucomicrobia	4	6	2	2	5	2	3	2			
Genera incertae sedis	2	1	1	2	3	1	1	2			
Unclassified Bacteriac	4	3	7	3	3	4	6	4			
Unclassified						1	1				
Total (all taxa)	272	262	275	264	274	252	260	267			


sequence similarity to a type strain in the RDP were assigned to the same phylum or class, respectively.

Clones with ≥75% but <85% sequence similarity to a type species.</p> Clones with <75% sequence similarity to a type species in the RDP.</p>

* S=Summer, W=Winter

Rarefaction of clone libraries

Analysis of the clones from all libraries with OTUs defined at different evolutionary distances (D)

*Calculations were based on OTUs formed using DOTUR (Schloss & Handelsman, 2005).

Conclusions

LIBSHUFF analyses indicated that the bacterial communities from soils under all seven treatments were significantly different. Forest soils (D0) contained the highest numbers of Acidobacteria, poultry litter treated soils (A2, B2 and C2) contained the least. γproteobacteria were unusually abundant in soils from cropland with inorganic fertilizer (A1). Nitrospira were specifically present only in the poultry litter treated soils (A2, B2 and C2). Seasonal differences observed for communities in the cropland (A1 and A2) and grazed pasture receiving inorganic fertilizer (C1), but not in the other treatments. Further analyses will be conducted to better understand the effects of land management on soil prokaryotic communities.

References

Kennedy, A.C. 1999. Agriculture, Ecosystems & Environment. 74: 65-76.

Schloss, P.D., Handelsman, J. 2005. Applied & Environmental Microbiology. 71: 1501-1506.

• Singleton, D., Furlong, M., Rathbun, S., Whitman, W.B. 2001. Applied & Environmental Microbiology, 67: 4374-4376,

 Whitman, W.B., Coleman, D.C., Wiebe, W.J. 1998. Proceedings of the National Academy of Science USA. 95: 6578-6583.

Acknowledgement

This work was supported by grant from the United States Department of Agriculture (USDA).