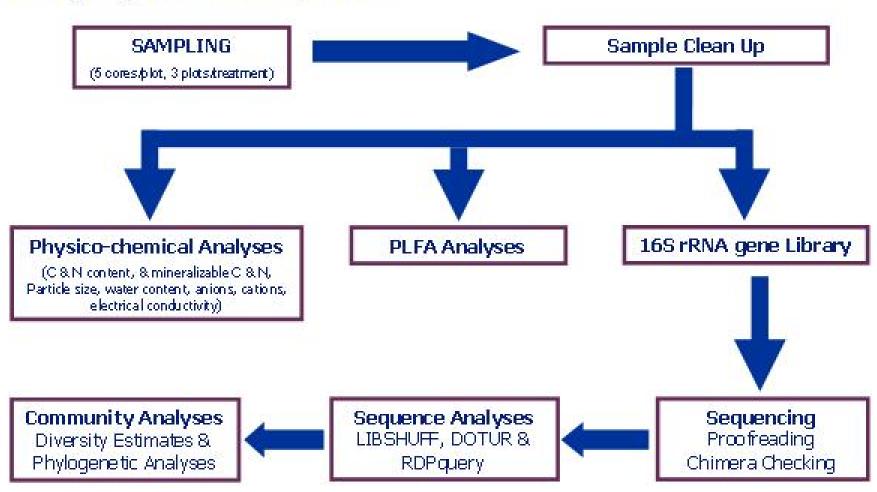


Effect of Land Management on Soil Bacterial Community Composition and Diversity in the Southern Peidmont USA

Correspondence Prof. William B Whitman whitman@uga.edu 706-542-4219

> Presenting Author Dr. Kamlesh Jangid jangidk@uga.edu 706-542-4692

Kamlesh Jangid^{1*}, Mark A. Williams², Alan Franzluebbers³, Michael Jenkins³, Dinku Endale³, David C. Coleman⁴ and William B. Whitman¹


¹ Department of Microbiology, University of Georgia, Athens GA 30602; ² Department of Plant and Soil Sciences, 470 Dorman Hall, Mail Stop 9555, Mississippi State University, MI 39762; ³ USDA - Agricultural Research Service, 1420 Experiment Station Road, Watkinsville GA 30677; ⁴ Institute of Ecology, University of Georgia, Athens GA 30602

Introduction

Although soils represent one of the most complex and difficult environments to study, it is amongst the largest and extremely diverse reservoirs of prokaryotes in the biosphere. Estimates show that it contains on the order of 2.6 x 10²⁹ cells worldwide or ~5% of all prokaryotic cells on earth (Whitman et al., 1998). Agriculture is one of the most important human activities that depends upon soil. While agriculture is well known to affect the activity of prokaryotic community of soil, the effects on prokaryotic diversity are not well described (Kennedy, 1999). Previously published reports that studied the prokaryotic diversity of soil used different methodologies, lacked correlation and were based on insufficient number of 16S rRNA gene clones. Hence, there is a need for a more systematic study that could be used as a standard for future

Experimental Strategy

Mixed community DNA was extracted from soil, and the bacterial 16S rRNA genes were amplified in 15-cycle PCR, cloned in pCR2.1® vector (Invitrogen), and then sequenced.

Study Site

The J. Phil Campbell, Sr., Natural Resource Conservation Center (JPCSNRCC), Watkinsville, Georgia

- 10 by 30 m plots with Cecil sandy loam soil conventionally cropped with corn/rye since 1991.
- · Control neighboring forest in an upland field with Cecil sandy loam soil with loblolly pine plantation protected from cultivation since the 1860's.
- Plots conventionally cultivated with various rowcrops prior to grassland establishment in 1991.

Treatments Studied to test affects of manure on soil bacteria

Sample Code ^a	Type of Field and Fertilizer	rtilizer Type of Manure		
Α	Conventionally Cropped			
A1	Inorganic	None	SMV	
A2	Poultry litter	Poultry	SM	
В	Un-grazed Pasture			
B1	Inorganic	None	SM	
B2	Poultry litter	Poultry	SMV	
C	Cattle-grazed Pasture			
C1	Inorganic	Cattle	SMV	
C2	Poultry litter	Cattle + Poultry	SMV	
D	Undisturbed forest with no inputs	None	SAV	

^a For a sample code of WA1S2, the first letter "W" stands for the sampling site Watkinsville, the second letter "A stands for the type of field (in this case, Cropland), the number "1" indicates the fertilizer added (in this case Inorganic), the third letter "S" stands for the Summer season and the fourth number "2" stands for the replicate

^bS= Summer, W= Winter

Abstract

Type of treatment

Cropland

Inorganic

Inorganic

Poultry litter

Grazed Pasture

Inorganic

No inputs

Poultry litter

Undisturbed forest

Type of treatment

Inorganic Fertilizer

Poultry Litter

(Un-grazed vs Grazed)

(Un-grazed vs Grazed)

Inorganic vs Poultry

(Both Un-grazed & Grazed)

Tw/482 (00)

WALING CHT

Poultry litter

Un-grazed Pasture

While land management practices are known to have a tremendous impact on agroecosystems and their microbial activities, its affects on prokaryotic diversity are not well described. Seven management systems at the J. Phil Campbell, Sr., Natural Resource Conservation Center near Watkinsville, Georgia were investigated: (1) control forest without agriculture since the Civil War, (2) cropping with inorganic fertilizer, (3) cropping with poultry litter fertilizer, (4) bermudagrass hay with inorganic fertilizer, (5) bermudagrass hay with poultry litter fertilizer, (6) bermudagrass grazed by cattle receiving inorganic fertilizer, and (7) bermudagrass grazed by cattle receiving poultry litter fertilizer. Mixed community DNA was extracted from soil, and the bacterial 16S rRNA genes were amplified in 15-cycle PCR, cloned, and then sequenced. The community composition and diversity were analyzed by RDPquery, LIBSHUFF and DOTUR. The resulting 3706 sequences formed 1335 operational taxonomic units (OTUs) with Chao1 estimated total richness of 3104 OTUs at 97 % sequence similarity. The RDPquery analyses indicated that the Acidobacteria and the Firmicutes are the two most abundant taxa in all soil libraries. While the forest soils (1) contained the highest numbers of Acidobacteria, the poultry litter treated soils (3, 5 and 7) contained the least. Similarly, y-Proteobacteria were

unusually abundant in soils from cropland with inorganic fertilizer (2). Interestingly, Nitrospira were present predominantly in the poultry litter treated soils (3, 5 and 7). Seasonal differences were observed for the communities in cropland (2 and 3) and grazed pasture receiving inorganic fertilizer (6), but not in the other treatments. Gemmatimonadetes occurred more frequently in the inorganic fertilizer treated summer soils from both cropland (2) and grazed pasture (6). The LIBSHUFF analyses indicated that the bacterial communities from soils under all seven treatments were significantly different. While the Acidobacteria and Firmicutes caused the differences in the pasture systems (4 through 7), all major taxa except the Planctomycetes, were different in the cropping systems (1 and 2). Seasonal differences within a treatment were observed for the cropping systems (1 and 2) and the cattle-grazed pasture soils receiving inorganic fertilizer (6). Most of these differences could be specifically attributed to the seasonal differences in Acidobacteria, Firmicutes and Proteobacteria associated with these soil libraries. The DOTUR analyses for the most abundant OTUs indicated treatment specific OTUs. The addition of poultry litter fertilizer specifically altered the composition of the Firmicutes. A huge prokaryotic diversity still remains unexplored.

LIBSHUFF Analyses of the Clone Libraries

Between

Seasons

Differences*

(Specific Groups)

Acidobacteria, Bactero idetes, Firmicutes,

Planctomycetes, Proteobacteria

Firmicutes

Acidobacteria, Firmicutes,

Proteobacteria

A1 α-proteobacteria

Season Specific Clades

Replicates

S, W

S, W

Comparisons between Un-grazed and Grazed pasture

Differences*

Season Specific Groups

Firmicutes, Proteobacteria (α & γ)

Acidobacteria, Proteobacteria (unclass)

Proteobacteria (unclass)

Acidobacteria, Firmicutes, Proteobacteria

Comparisons were made using LIBSHUFF

* The experimentwise p-value calculated from the

Bonferroni correction was 0.002 for all the

treatments. For our analysis we considered 0.01

Sequence Data Summary

: 4032 Clones prepared : 3719 Sequences obtained : 12 Chimeric sequences Non-16S rRNA sequences Sequences used for analyses : 3706 : 842 bp Mean Read length

The 16S rRNA gene clones were sequenced at the Molecular Genomics Instrumentation Facility, University of Georgia

Phylogenetic Assignments of Clones

12 Table	Cropland		Ungrazed	Pasture	Grazed F	V-Cones	
Taxa	Inorganic	Poultry	Inorganic	Poultry	Inorganic	Poultry	- Forest
Acidobacteria	129	75	117	91	148	102	255
Actinobacteria	8	14	12	12	19	17	15
Bacteroidetes	38	40	27	31	22	40	12
Firmicutes	60	109	119	109	119	125	71
Planctomycetes	25	20	37	34	21	29	38
Proteobacteria	224	213	191	224	161	167	112
Alpha	26	40	56	54	48	44	57
Beta	59	76	74	89	47	60	32
Delta	19	43	17	21	16	20	3 <mark>.</mark>
Gamma	108	33	25	23	37	14	9
Unclassified	12	21	19	37	13	29	11
Others	35	55	31	38	36	47	32
Total - All Taxa	519	526	534	539	526	527	535

Number of clones is reported. Phylogienetic assignments were based upon comparisons to sequences in the RDP database performed by RD Pquery (http://simo.marsci.uga.edu/public_db/rdp_query.htm). Clones with <75% sequence similarity to a type species were assigned as unclassified bacteria.

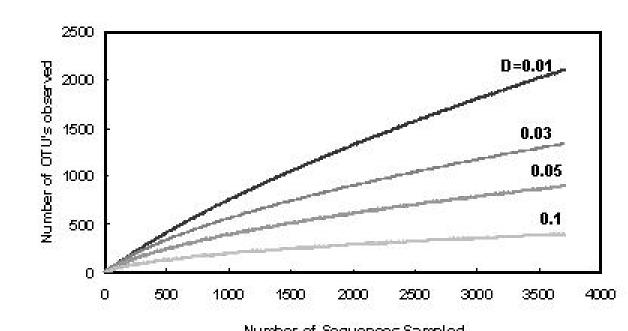
^bClones with ≥75% or ≥85% sequence similarity to a type strain in the RDP were assigned to the same phylum or class, respectively. ^{_c}Clones with ≥75% but <85% sequence similarity to a type species were assigned to the same phylum as unclassified. $^{-d}$ Includes taxa with <1.0 total clones in the whole library were grouped together as others. *S=Summer, W=Winter

Diversity Indices

Diversity Index ^a	Cropland		Ungrazed	l Pasture	Grazed	Favort	All	
	lex ^a Inorganic Poultry		Inorganic	Poultry	Inorganic	Poultry	- Forest	Sites
S ^b	219	316	314	335	277	346	225	1333
Ne	519	526	534	539	526	527	535	3706
Evenessd	2.12	2.18	2.18	2.21	2.15	2.21	2.06	2.08
H/Hmax	0.80	0.87	0.87	0.89	0.84	0.90	0.77	0.79
Chao 1e	383	748	910	966	752	972	699	3 103
95 % [cif	322	613	715	763	586	781	511	2776
95 % hci¤	481	945	1190	1255	998	1241	987	3481

^aCalculations were based on OTUs formed using DOTUR (Schloss & Handelsman,

2005) at an evolutionary distance of <0.03. S= Summer, W= Winter ^bNumber of OTUs.


© Number of clones in the library.

Minimum and maximum eveness values were 0 & 2.3, respectively. * Chao1 = S + $n_1 \frac{2}{2} n_2$, where n_2 is the number of clones that occur twice.

195% lower confidence interval for Chao1 estimator.

9 95% higher confidence interval for Chao1 estimator

Rarefaction of Clone Libraries

Calculations were based on OTUs formed using DOTUR (Schloss & Handelsman, 2005)

Distribution of Representative Abundant OTUsa

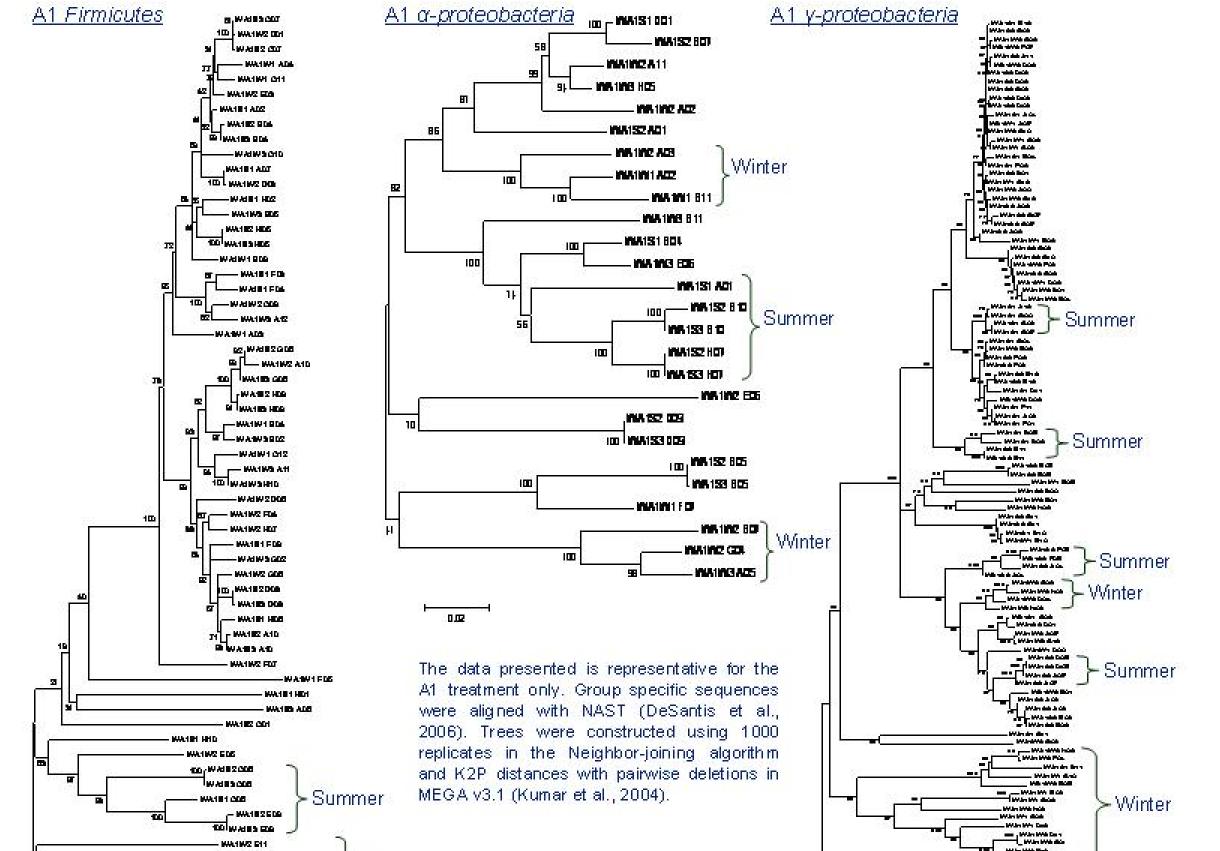
Taxa	Clone Name ^b	Cropland		Un-grazed Pature		Grazed Pasture		Forest	N°
		A1	A2	B1	B2	C1	C2	D0	31
Acido	WA1S1_A08	16	3	3	1	16	1	3	41
Acido	WA1W1_B03	4	3	8	1	4	5	13	38
Bacillus	WA2S1_D12		2	7	1	2	2	7	21
Acido	WA1S1_G02	1	1		5	1	4	4	16
Acido	WA1S1_B09	8	2	11		7	4	1	33
Acido	WA1S2_A05	7	1	1	2	2	2		15
Bacillus	WA1S1_H03	11	1	2	3	5	2		24
Unclassi.	WA2S1_A10		34	7	7	17	16		81
Acido	WA1S1_H05	8	1	1	3	4	3000		17
Flavobac	WB1S3_B01			9	2	3	2		16
Acido	WA1S2_B06	5		2		1		13	21
Acido	WA1S1_B01	7		1		4		5	17
Firmi.	WA2S1_H07		5		2		5		12
Beta	WA2S2_C07		7	3	1				11
Acido	WA1S1_D02	16			1			5	22
Gamma	WA1S1_A03	15			-	3	1		19
Sphingo	WA2S2_A05		9	1					10
Nitrospira	WB2S1_A03				7		3		10
Firmi.	WA1S1_A04	27				6			33
Acido	WDOS1_D09							30	30
Acido	WDOS1 A05							20	20

nost abundant OTUs for each treatment. OTUs were formed at an evolutionary distance <0.03. Distributions

^b Representative clone for each OTU.

^d OTUs in bold were specifically absent from poultry litter treated soil libraries

Conclusions


LIBSHUFF analyses indicated that the bacterial communities from soils under all seven treatments were significantly different. Forest soils (D0) contained the highest numbers of Acidobacteria, poultry litter treated soils (A2, B2 and C2) contained the least. y-proteobacteria were unusually abundant in soils from cropland with inorganic fertilizer (A1) The differences between various treatments were specifically attributed to the differences between the Acidobacteria, the Firmicutes and the Proteobacteria present in those soils. The application of poultry litter specifically altered the composition of these three taxonomic groups. Some OTUs were specifically associated with some treatments. Treatment and season specific trends were also observed for some taxonomic groups. The land management in cropping system decreased the prokaryotic diversity. A huge amount of unexplored diversity exists.

References

- DeSantis, T. Z., Hugenholtz, P., Keller, K., Brodie, E. L., Larsen, N., Piceno, Y. M., Phan, R., Andersen, G. L. 2006. Nucleic Acids Research 34: W394-W399.
- Kennedy, A.C. 1999. Agriculture, Ecosystems & Environment 74:65-76. Kumar S, Tamura, K., Nei, M. 2004. Briefings in Bioinformatics 5: 150-163.
- Schloss, P.D., Handelsman, J. 2005. Applied & Environmental Microbiology 71:
- Singleton, D., Furlong, M., Rathbun, S., Whitman, W.B. 2001. Applied & Environmental Microbiology 67: 4374-4376.
- Whitman, W.B., Coleman, D.C., Wiebe, W.J. 1998. Proceedings of the National Academy of Science USA 95:6578-6583

Acknowledgement

This work was supported by grant from the United States Department of Agriculture (USDA).

